100(1+0.2P+0.02P^2)t=18

Simple and best practice solution for 100(1+0.2P+0.02P^2)t=18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100(1+0.2P+0.02P^2)t=18 equation:



100(1+0.2+0.02^2)P=18
We move all terms to the left:
100(1+0.2+0.02^2)P-(18)=0
We multiply parentheses
0P^2+100P+20P-18=0
We add all the numbers together, and all the variables
P^2+120P-18=0
a = 1; b = 120; c = -18;
Δ = b2-4ac
Δ = 1202-4·1·(-18)
Δ = 14472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14472}=\sqrt{36*402}=\sqrt{36}*\sqrt{402}=6\sqrt{402}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-6\sqrt{402}}{2*1}=\frac{-120-6\sqrt{402}}{2} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+6\sqrt{402}}{2*1}=\frac{-120+6\sqrt{402}}{2} $

See similar equations:

| =100(1+0.2P+0.02P^2)t=18 | | 5x+35(440-x)=1780 | | P=100(1+0.2t+0.02t^2) | | 12x-5=4x+43 | | 3x^2-7=1 | | C(t)=31.5-0.35t^2 | | -7v+4(v-8)=-26 | | 5.5-x=3.4 | | 0.9+x=x+20 | | 20(x-4)=8(x+3.5) | | X-4(20)=x+3.5(8) | | (+2x^2-7x+4x-14)(2x+3)=117 | | (x+2)(2x-7)(2x+3)=117 | | X=y^2-10y+24 | | (x+2)(2x-7)(2x+3)=0 | | 7x=365 | | 12(15+.08y)-y=180 | | n^2+n+C=0 | | 1/3*x+2=7 | | 1/3x-10/3=-10/3(x+10/3) | | -7x+5+10=3x-7 | | 8x+5/3=x/10 | | X+6+3x-5=36-x | | 8/3w=-56/7 | | 15x+6x=4×-8 | | v*v-6v=-8 | | 15x+6×=4x-8 | | V*v-6v+8=0 | | 3x+2x-7=2x+35 | | x*x*x-x=20 | | 2(a-3)=3+6 | | 9x+7=-1 |

Equations solver categories